+972 (0)8-86 66 856CONTACT US
0item(s)

You have no items in your shopping cart.

Product was successfully added to your shopping cart.

Thermal Oxidation Equipment

In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer (semiconductor). The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The rate of oxide growth is often predicted by the Deal-Grove model. Thermal oxidation may be applied to different materials, but this article will only consider oxidation of silicon substrates to produce silicon dioxide.

oxidation technology

Most thermal oxidation is performed in furnaces, at temperatures between 800 and 1200°C. A single furnace accepts many wafers at the same time, in a specially designed quartz rack (called a “boat”). Historically, the boat entered the oxidation chamber from the side (this design is called “horizontal”), and held the wafers vertically, beside each other. However, many modern designs hold the wafers horizontally, above and below each other, and load them into the oxidation chamber from below.

Vertical furnaces stand higher than horizontal furnaces, so they may not fit into some microfabrication facilities. However, they help to prevent dust contamination. Unlike horizontal furnaces, in which falling dust can contaminate any wafer, vertical furnaces only allow it to fall on the top wafer in the boat.

oxide quality

Wet oxygen is preferred to dry oxygen for growing thick oxides, because of the higher growth rate. However, fast oxidation leaves more dangling bonds at the silicon interface, which produce quantum states for electrons and allow current to leak along the interface. (This is called a “dirty” interface.) Wet oxidation also yields a lower-density oxide, with lower dielectric strength.

The long time required to grow a thick oxide in dry oxygen makes this process impractical. Thick oxides are usually grown with a long wet oxidation bracketed by short dry ones (a dry-wet-dry cycle). The beginning and ending dry oxidations produce films of high-quality oxide at the outer and inner surfaces of the oxide layer, respectively.

Mobile metal ions can degrade performance of MOSFETs (sodium is of particular concern). However, chlorine can immobilize sodium by forming sodium chloride. Chlorine is often introduced by adding hydrogen chloride or trichloroethylene to the oxidizing medium. Its presence also increases the rate of oxidation.

Used, Surplus & Refurbished Thermal Oxidation Tools & Equipment in our inventory:

  • AVIZA
  • TEL
  • BRUCE / KOKUSAI
  • KOYO
  • ASM